
g As the complexity of software in
modern vehicles increases, manufactur-
ers are focused on establishing a consis-
tent, automated, and transparent testing
process. At the same time, methods need
to be used that enable early testing activ-
ities in the development. In this context,
Software-in-the-Loop (SiL) testing is in
creasingly being used in virtually scal
able environments.

Testing is being moved to SiL environ-
ments primarily for economic reasons.
In the context of agile software devel
opment, this approach is the most cost-
effective and fastest way to run a large
number of tests continuously in paral-
lel and ensure the shortest possible feed-
back time. This is because the necessary
virtual infrastructure can be set up with
low-cost resources and expanded as

needed. In addition, traditional envir
onments such as Hardware-in-the-Loop
(HiL) test benches and vehicle testing
remain important to validate vehicle
functions under real-world conditions.
The key to success is highly automated
and continuous testing across diverse
environments. But how do you ensure
maximum usability while keeping track
of thousands of results?

Test | Measurement

SiL-First Approach in a Test
Ecosystem as Success Factor
for Automotive Software
In-house software development is playing a crucial role in the automotive industry, as innovative

software features are one of the key differentiators in the market. Before being used in a vehicle,

they undergo countless tests in various environments using the latest methods. Mercedes-AMG

and tracetronic show how the SiL-first approach is used for a control unit in the e-Drive to identify

and correct errors in the code as early as possible.

www.springerprofessional.com/automotive

COVER STORY   Test | Measurement

8

The increasing focus on in-house
development of software in the e-
Drive has led to a transformation
at Mercedes-AMG. With the intro
duction of the Scaled Agile Framework
(SAFe), cross-functional teams have
been used to develop software fea-
tures, requiring new roles and skills,
and placing an emphasis on high
quality testing. Moreover, the devel

opment of a powerful system for
software testing was given special
priority. As a result, an end-to-end
test ecosystem for the e-Drive has
been developed and continuously
expanded in close cooperation with
tracetronic since 2022. The goal is to
standardize testing activities across
several diverse environments and
detect failures as early as possible.

DEFINITION OF A TEST ECOSYSTEM

Multiple test types need to be com-
bined to test millions of lines of code,
from classic unit tests to those on drive
components and in the vehicle. Often
there are entire departments, which
are dedicated to software testing.
The main challenge is that the code
embedded in ECUs must respond to

WRIT TEN BY

Dipl.-Ing. Jan Georges
is Senior Engineer

at tracetronic in
Dresden (Germany).

Moritz Sauren, M. Sc.
is e-Drive Software Developer

at Mercedes-AMG GmbH in
Affalterbach (Germany).

Dipl.-Ing. Tobias Fochtmann
is Senior Software

Developer at tracetronic
in Munich (Germany).

Dipl.-Ing. (FH) Carmen Schaak
is Manager Digital Methods e-Drive

at Mercedes-AMG GmbH in
Affalterbach (Germany).

© Mercedes-AMG GmbH

Test | Measurement

9ATZ electronics worldwide  05|2025   

events in the vehicle in near real time.
This requires the development of com-
plex HiL- or SiL systems that use physi-
cal models to induce critical states of
the developed code and verify responses
using appropriate measurement tech
nology. Test automation tools such as
ecu.test are used to manage the grow-
ing number of tests based on the con-
stant changes and extensions to
software functionality.

Individual test bench automation
has been in practice for years. The
challenge lies in the next level of
automation [1]. This means that it
is not just a matter of running tests
quickly and cost-effectively on a test
bench, but rather that the entire path,
from development to individual test
systems to the consolidation of all
results, must be considered in an eco-
system for the release of new driving
functions. This is the only way to op
timize the entire process.

The first challenge is to define the
goals for improved automation [2].
The Mercedes-AMG test ecosystem
focuses primarily on:
	– Speed: new software releases must
be integrated and tested in a brief
period of time.

	– Suitable test environment: the most
suitable environment that provides
cost-effective and reliable results
according to the test objectives
should be used.

	– Test case quality: the implemented
tests need to fit into defined quality
standards to be reproducible and
easy to comprehend.

A test ecosystem is a complex IT system
with hundreds of participants who work
together to develop software, deliver test
cases and models, review results and
manage releases. This requires many
tools to be linked together. One import-
ant requirement is stability, because tool
updates or configuration changes in par-
ticipating systems can break the entire
system and must therefore be tested
accordingly. Another one are data stan-
dards, which means, that creating and
performing tests requires a wide range
of data, from artifacts and parameters
to results. Standards should enable the
smooth exchange of data between tools.
The third requirement is the alignment
of the working method, because the en
tire process must be considered, rather
than optimizing individual teams. Cross-
functional teams of IT and test system
experts form the basis for developing
and operating the ecosystem.

TECHNICAL STRUCTURE OF
THE TEST ECOSYSTEM

The primary goal of the ecosystem
within the given boundary conditions
is to standardize tools and workflows
across the board and to achieve the
highest possible level of automation

for functional testing. This requires the
development of a cloud-based business
logic with the final integration of five
specific tools, including test.guide and
ecu.test, into the existing infrastruc-
ture. The business logic will consider
these different requirements and ensures
that the right tests are run at the right
time, with the right data and configu
rations. All testing activities of the
e-Drive should be centrally accessible
to all stakeholders. In such an architec-
ture, a lot of information needs to be
processed and exchanged. It is there-
fore particularly important to rely on
robust APIs for all the tools and sys-
tems involved and on the availability
of interpretable data formats. In addition,
it must be ensured that the respective
artifacts such as test scripts, configura-
tion files or mapping files can be devel-
oped and made available to the corre-
sponding tools asynchronously from
the automated execution, FIGURE 1.

A major challenge in building such
an ecosystem is the integration of envi-
ronments with different levels of auto-
mation. At the heart of this is the busi-
ness logic that automates specific work-
flows and standardizes data exchange
to enable seamless integration within
your own IT infrastructure. It also acts
as an interface to external systems.

For the e-Drive, both fully automated
processes in virtual environments and
less automatable processes on the test

FIGURE 1 System structure (© Mercedes-AMG GmbH)

COVER STORY   Test | Measurement

10 www.springerprofessional.com/automotive

bench or in the vehicle must be inte-
grated into the system. This means that
automated execution can be triggered
by events from an upstream CI pipeline
as well as by manually configured jobs.
As soon as such a trigger event occurs,
the necessary data from all involved
tools and systems is processed, an exe-
cution task is created and assigned to
the appropriate test environment, and
the planned tests are executed. Test
results are stored centrally, indepen-
dent of the environment, enabling
stakeholders to easily get a compre

hensive overview. All relevant metadata
and measurements are also stored. The
results are then made available for fur-
ther processing to trigger automated fol-
low-up processes, such as automated
software deployment.

The entire platform is based on the
approach of centralization by integrat-
ing distributed systems and tools into
a separate business logic. Managing all
the tools involved is particularly com-
plex and challenging due to the many
existing dependencies. In addition, indi-
vidual updates to the IT infrastructure

or downtimes can affect the operabil-
ity of the entire system, which can
quickly lead to a slowdown or even
blockage in the development process
of the ECU software.

REAL-LIFE USE CASE IN SIL

The test ecosystem is used for several
e-Drive ECUs in different environments
in real operation. This also includes a
domain controller, which is being devel-
oped in-house at Mercedes-AMG. It relies
heavily on the SiL test environment and

FIGURE 2 Feature development process flow from code change to test result (© Mercedes-AMG GmbH)

ATZ electronics worldwide  05|2025    11

Rely on the highly dynamic temperature control systems from
the PRESTO series for your test bench and temperature control
of environmental simulations for material and quality tests or
stress and load tests. With decades of experience in the develop-
ment and manufacture of process thermostats, JULABO not only
offers premium temperature control technology for the highest
demands, but also individual special solutions for customer-
specific applications.

PERFECT
TEMPERATURE SIMULATION

FOR YOUR TEST BENCH

Process systems

www.julabo.com/automotivewww.julabo.com/automotive

 C
U

ST
OM

 S
OLU

TIO
NS

QUALITY REPRODUCIBILITY

is very close to the ideal state of plat-
form usage, both technically and meth-
odologically. FIGURE 2 shows the feature
development process from code change
to the test result. The integrated SiL
approach allows the system to quickly
provide feedback for the entire ECU.

The implementation or adaptation
of any module of the ECU code in a
repository represents the beginning of
the feedback loop. The code change is
first committed in the selected tool for
software version management, or the
sum of the individual changes from a
development branch is merged into
a “stable branch”. Such events are the
triggers for the fully automated process
flow – a serial sequence of multiple
stages. The corresponding time-to-feed-
back composition is shown in FIGURE 3.

The first stage involves performing
static tests and checks against defined
quality criteria according to modeling
or coding guidelines. This takes approx
imately 60 sec. In the next stage, the SiL
is built as a SuT. Here, the sources of the
repository are first used for the respec-
tive commit and a virtual ECU (vECU)
is built in a special build environment.
The vECU is then integrated into the
SuT with the relevant plant model and
configuration data from the simulation.
The generated data is then stored in the
build artifact management. The entire
process takes about 300 sec.

Once the SiL is successfully built, the
business logic of the ecosystem is trig-
gered and an execution task is created
in test.guide, which takes about 10 sec.

The execution task is then assigned
to the appropriate test station, and
the defined functional tests are exe-
cuted with ecu.test in approximately
330 sec according to the plan. The
results are bundled and uploaded to
test.guide. Finally, the business logic
checks to see if the initial commit
or merge request from FIGURE 2 was
successful, and then the next steps
can begin. This final process step
takes another 30 sec. This means that
in around 730 sec development teams
can receive feedback on code changes
at the overall ECU level and initiate
subsequent steps such as automated
deployment or the execution of addi-
tional tests in other environments.

SUMMARY AND OUTLOOK

The test ecosystem for the e-Drive,
created in collaboration between
Mercedes-AMG and tracetronic,
shows the state of the art in modern
automotive software development and
how this platform can be used to pro-
vide fully automated feedback to the
development teams for every single
code change. A software developer
gets easy access to complex software
environments. Software functionality
can be tested in much less time, which
is a significant advantage when devel
oping new products.

In addition, parallelizing test execu-
tion in the cloud or distributing indi
vidual plans across multiple virtual
test benches offers tremendous scal

ability, creating further potential
to reduce time-to-feedback. In the
future, the optimum execution time
will have to be found by balancing
the resource consumption through
parallelization and the runtime of
execution tasks according to their
number and duration.

REFERENCES
[1]	 Eldh, S. et al.: Test Automation Improvement
Model - TAIM 2.0. In: 2020 IEEE International Con-
ference on Software Testing, Verification and Valida-
tion Workshops (ICSTW), Porto, Portugal, 2020,
pp. 334-337. Online: https://ieeexplore.ieee.org/
document/9155990, access: February 12, 2025
[2]	Eldh, S.; Andersson, K.; Ermedahl, A.; Wiklund,
K.: Towards a Test Automation Improvement Model
(TAIM). In: 2014 IEEE Seventh International Confer-
ence on Software Testing, Verification and Valida-
tion Workshops, Cleveland (OH), USA, 2014, pp.
337-342. Online: https://ieeexplore.ieee.org/
document/6825682, access: February 12, 2025

THANKS
The authors would like to thank the members of the

development teams involved at tracetronic GmbH

and Mercedes-AMG GmbH for their daily commit-

ment and excellent cooperation. Special thanks

go to Alexander Beck and Alexander Schneider,

developers at Mercedes-AMG, for their support

in describing the real use case.

FIGURE 3 Composition of time-to-feedback (© Mercedes-AMG GmbH)

COVER STORY   Test | Measurement

12 www.springerprofessional.com/automotive

